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Abstract

Background: The purpose of this study was to determine whether cycling time trial (TT) performance differs
between hypobaric hypoxia (HH) and normobaric hypoxia (NH) at the same ambient PO, (93 mmHg, 4,300-m
altitude equivalent).

Methods: Two groups of healthy fit men were matched on physical performance and demographic characteristics
and completed a 720-kJ time trial on a cycle ergometer at sea level (SL) and following approximately 2 h of resting
exposure to either HH (n=6, 20 + 2 years, 752+ 11.8 kg, mean + SD) or NH (n =6, 21 + 3 years, 774 + 8.8 kq).
Volunteers were free to manually increase or decrease the work rate on the cycle ergometer. Heart rate (HR), arterial
oxygen saturation (Sa0,), and rating of perceived exertion (RPE) were collected every 5 min during the TT, and the
mean was calculated.

Results: Both groups exhibited similar TT performance (min) at SL (73.9+7.6 vs. 73.2 +82), but TT performance was
longer (P < 0.05) in HH (121.0 + 12.1) compared to NH (99.5 + 18.1). The percent decrement in TT performance from
SL to HH (65.1 + 23.6%) was greater (P < 0.05) than that from SL to NH (35.5 + 13.7%). The mean exercise Sa0,, HR,
and RPE during the TT were not different in HH compared to NH.

Conclusion: Cycling time trial performance is impaired to a greater degree in HH versus NH at the same ambient

PO, equivalent to 4,300 m despite similar cardiorespiratory responses.
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Background

Due to increasing interest in using hypoxic training to
induce improvements in endurance performance in ath-
letes, mountaineers, and military personnel, the use of
intermittent exposures to either hypobaric hypoxia (HH)
or normobaric hypoxia (NH) as an adjunct or in
addition to regular sea-level training has generated a
plethora or research [1-7]. Whereas NH can be recre-
ated anywhere using a mask, bag, or commercially avail-
able room, HH requires multi-million dollar hypobaric
chambers or natural altitude conditions. The ease of use
of NH compared to HH has generated questions on
whether repeated exposures using this emerging tech-
nology is beneficial for enhancing endurance perform-
ance. The results from most of these studies are
controversial and depend on whether the endurance
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tests are conducted at sea level or altitude; the severity,
length, and dose of hypoxic exposure; and the type of
study design [8-12].

No studies to date have determined whether endur-
ance performance differs during acute exposures to HH
and NH. If NH does not induce the same degree of hyp-
oxic stimulus as HH, its usefulness as a training aid for
endurance performance improvements at sea level or
altitude may be limited. One meta-analysis suggested
that live-high, train-low protocols conducted in HH
were more effective for enhancing sea-level endurance
performance than live-high, train-low protocols con-
ducted in NH [10]. However, this meta-analysis provided
no insight on whether endurance performance is the
same or different in HH and NH. More recently, a re-
view suggested that repeated exposures to HH or NH
conditions resulted in distinctly different endurance per-
formance outcomes during subsequent exposure to ter-
restrial altitude [8]. Collectively, these reviews [8,10]
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indicate that similar training under HH or NH condi-
tions do not provide similar endurance performance out-
comes during subsequent exposure to sea level or
terrestrial altitude conditions. Whether these perform-
ance differences are related to differences in physio-
logical processes occurring during acute exposures to
HH and NH is not well understood.

A recent series of articles presented diverging stances
on whether the physiologic responses to HH and NH
are similar or different [13-15]. Some studies reported
20% to 30% increases in resting ventilation in NH com-
pared to HH [16-19], while other studies reported no
differences between the two environments at altitudes
equivalent to 4,000 m and above [20-22]. In most studies
that reported increased ventilation in NH, arterial oxy-
gen saturation (Sa0,), the end product of both pulmon-
ary ventilation and gas exchange, was similar between
the two environments [17-19]. To date, most studies
have reported no differences in the cardiac and hema-
tologic responses to HH and NH [18,19,22-24]. As such,
it is currently unclear and hotly debated as to whether
exposure to HH and NH elicits different physiologic
responses.

The purpose of this study was to determine in two
groups of men, matched on physical performance and
demographic characteristics, whether cycling time trial
(TT) performance differs during an acute exposure to
HH and NH at the same ambient PO, (93 mmHg,
4,300-m altitude equivalent). We hypothesized a greater
decrement in cycle TT performance in HH compared to
NH due to increased ventilation and improved oxygen
delivery in NH.

Methods

Volunteer test subjects

Two groups of healthy fit men were exposed to either
HH (n=6) or NH (n=6). These two groups were
matched on sea-level (SL) cycle TT performance (mean +
SD; 73.9 £ 7.6 min vs. 73.2 £ 8.2 min), SL peak oxygen up-
take (VOaqpear) (47.5 + 4.3 ml/kg/min vs. 49.5 + 5.0 ml/kg/
min), age (20+2 years vs. 21+ 3 years), height (178 +
7 cm vs. 177 + 5 cm), and weight (75.2 £ 11.8 kg vs. 77.4 +
8.8 kg). Each of the 12 volunteers was a lifelong, low-
altitude resident and had no exposure to altitudes greater
than 1,000 m for at least 6 months immediately preceding
the study. All received medical examinations, and none
had any condition warranting exclusion from the study,
including pulmonary hypertension, sickle cell trait, or
family history of migraine. All tested within normal ranges
for pulmonary function and had normal hemoglobin [Hb]
and serum ferritin levels. All volunteers performed regular
sea-level aerobic training (1-2 h -week ™) before and dur-
ing the study. Each gave written and verbal acknowledg-
ment of their informed consent and was made aware of

Page 2 of 9

their right to withdraw without prejudice at any time. The
study was approved by the Institutional Review Board of
the US Army Research Institute of Environmental Medi-
cine in Natick, MA, USA. Investigators adhered to the
policies for protection of human subjects as prescribed in
Army Regulation 70-25, and the research was conducted
in adherence with the provisions of 45 CFR Part 46.

Study design

The study design is shown in Figure 1. This study used
an unblinded two-factor (test condition and group) ex-
perimental design. The test conditions were defined as
SL and hypoxia (HYP). The groups were defined as HH
and NH. Preliminary SL baseline measurements in-
cluded the following: (1) a VOgpeax test, (2) a cycle en-
durance test, (3) five 45-min cycle training sessions
conducted at 55% VOopears and (4) a second cycle en-
durance test. These preliminary measurements were
made to stabilize performance improvements due to
familiarization with the cycle ergometer and/or training
effects. The VOypcac Was not measured in HYP but esti-
mated by decrementing the SL VOycax by 26% which is
an established group decrement at 4,300 m [25]. Data
collection included the following measurements made in
both SL and HYP in the following order: (1) body weight
in t-shirt and shorts, (2) resting ventilation, (3) resting
blood sample, and (4) cycle endurance test, and (5) post-
exercise blood sample. The cycle endurance test con-
sisted of five distinct segments: (1) a 5-min warm-up at
50 W, (2) steady-state exercise consisting of 20 min at
45% altitude-specific VOgjpeax and 20 min at 65%
altitude-specific VO;peais (3) a post-exercise blood sam-
ple, (4) a 5-min break to allow bathroom use and
stretching, and (5) a self-paced 720-k] cycle TT done as
fast as possible. The total exposure time to HYP was ap-
proximately 4 h with the resting measures occurring in
the first 2 h and cycle endurance test occurring in the
second 2 h.

Peak oxygen uptake

VOspeac was measured during incremental, progressive
cycling exercise to exhaustion at SL only. Volunteers
pedaled for 2 min at 50, 100, and 150 W. Following
2 min at 150 W, the workload was increased in 30-W
increments for 2-min stages until O, uptake failed to in-
crease or they stopped the test despite strong encour-
agement. During the test, oxygen consumption was
measured continuously using a metabolic cart (True
Max 2400, ParvoMedics, Salt Lake City, UT, USA), heart
rate (HR) was monitored continuously using a heart rate
watch (UNIQ CIC, Computer Instruments Co., Hempstead,
NY, USA), arterial oxygen saturation (SaO,) was measured
continuously by finger pulse oximetry (Model 8600,
Nonin Medical Inc., Plymouth, MN, USA), and a rating of
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Figure 1 Study design indicating timing of baseline, SL, and HYP measurements in either HH or NH. One preliminary peak oxygen
uptake, two preliminary cycle endurance tests consisting of two steady-state exercise bouts followed by a cycle time trial test, and five cycle
exercise training sessions occurred during baseline testing. Prior to each cycle endurance test in SL and HYP, resting ventilatory, cardiovascular,
and hematologic responses were measured.

perceived exertion (RPE) was determined every 2 min
using the 6 to 20 Borg scale [26].

Resting ventilation and cardiovascular assessment
Resting ventilation was measured in the morning prior
to the cycle endurance test both at SL and in HYP. Vol-
unteers sat in a semi-recumbent position and breathed
through a low-resistance breathing circuit connected to
a breath-by-breath open-circuit metabolic system (Vmax
229, Viasys Healthcare, Yorba Linda, CA, USA) cali-
brated with certified gases and volume standard. Each
volunteer's resting minute ventilation (VE), oxygen con-
sumption (VO,), carbon dioxide production (VCO,),
and end-tidal oxygen and carbon dioxide partial pressure
(PETO, and PETCO,) were measured. Simultaneously,
Sa0, and HR were measured by pulse oximetry. Ventila-
tion data was collected for at least 10 min, and the mean
over the last 5-8 min of the session was calculated. Rest-
ing systolic blood pressure (SBP) and diastolic blood
pressure (DBP) were measured after completing ventila-
tion measures, and mean arterial pressure (MAP) was
calculated as 0.333 (SBP — DBP) + DBP.

Hematologic assessment

Immediately following the resting ventilation measure-
ment, a resting venous blood sample was obtained from
the forearm for the measurement of hemoglobin ([Hb])
and hematocrit (Hct) both at SL and in HYP. Following
the steady-state portion of the cycle endurance test, an-
other blood sample was obtained for measurement of
[Hb] and Hct. The samples were analyzed immediately

in duplicate using the i-STAT portable clinical analyzer
(Abbott Diagnostics, Abbott Park, IL, USA). Percent
change in plasma volume (PV) from SL to HYP and
from pre- to post-exercise in both SL and HYP was cal-
culated according to the Dill equation [27].

Steady-state exercise testing

Cycle endurance tests were performed on an electro-
magnetically braked cycle ergometer (Excalibur, Lode
BV, Groningen, Netherlands). At rest and during the two
steady-state work bouts, HR, SaO,, and RPE were col-
lected as previously described and respiratory gas mea-
surements (i.e., VE, VO,, VCO,) were made using open-
circuit spirometry (Vmax 229, Viasys Healthcare, Yorba
Linda, CA, USA). The metabolic cart was calibrated with
certified gases and volume standard and used in the
mixing chamber mode for exercise testing. The respira-
tory exchange ratio (RER) was calculated from VO, and
VCO, measurements. The ventilatory equivalents for O,
(VE-VO, 1) and CO, (VE-VCO, ') were calculated
from each subject's VE, VO,, and VCO, data. Cardiac out-
put (CO) was also measured at rest and during the two
steady-state work rates using a validated non-invasive con-
tinuous finger blood pressure measurement system
(Finometer, Finapres Measurement Systems, Arnhem,
Netherlands) [28-30].

Time trial performance

After the steady-state exercise, each volunteer completed
a 720-kJ] TT on a cycle ergometer. Respiratory gas mea-
surements were not made during the TT in order to
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eliminate the impact of breathing through a mouthpiece
on an all-out endurance performance effort. A shorter
duration to complete the fixed 720-k] time trial from
one testing condition to another was considered an im-
provement in performance and vice versa. Due to the
extensive familiarization period, volunteers were well
acquainted with their capabilities on the cycle ergometer
and were free to choose the initial wattage at the start of
the TT. During the TT, volunteers were visually aware of
the current wattage on the cycle ergometer at all times
and free to manually increase or decrease the work rate
by 5-W increments. There were no restrictions on the
number or direction of 5-W changes. Volunteers were
continually informed of the distance completed but not
the time elapsed during the TT. This type of TT per-
formance test has been shown to have a high repeatabil-
ity and low coefficient of variation [31]. The HR, SaO,,
and RPE by methods previously described were collected
every 5 min during the TT, and the mean value was
calculated.

Environmental conditions

All testing was performed at SL in Natick, MA, USA in
a hypobaric chamber or hypoxia room (Colorado Alti-
tude Training, Inc., Boulder, CO, USA) maintained at a
temperature and relative humidity of 21 + 2°C and 45 +
5%, respectively. The hypoxia room was maintained at
an ambient PO, of 93 mmHg by reducing the fractional
inspired concentration of O,, while the hypobaric cham-
ber was maintained at an ambient PO, of 93 mmHg by
decompression to 446 mmHg over a 15-min period. The
inspired PO, in the hypobaric chamber was 83.4 mmHg,
while the inspired PO, in the hypoxia room was
87.4 mmHg. The ambient PO, was maintained in the
normobaric hypoxia room with a combination of auto-
matic feedback loops using the True Max gas analyzers
as well as manual adjustments in flow to add room air if
ambient PO, levels dropped from desired levels. The
ambient PO, fluctuated very little (+0.1 mmHg) due to
constant monitoring of the room. The SL testing was
performed at ambient barometric pressure (approxi-
mately 760 mmHg), and all HYP exposures were con-
ducted at an altitude equivalent of 4,300 m. The mean
ambient PCO, values in the hypoxia room (0.9 +
0.2 mmHg) and hypobaric chamber (0.7 £ 0.2 mmHg)
were similar.

Statistical analyses

A two-way repeated measures ANOVA was used to
analyze differences between the repeated measures test
condition factor (SL and HYP) and independent group
factor (HH and NH) for all resting ventilatory and car-
diovascular assessments as well as cycle TT perform-
ance. Three-way ANOVAs, with repeated measures on
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the additional factor of exercise duration, were used for
physiological measurements during the two steady-state
work rates. Pearson product-moment correlations were
utilized to determine significant associations between
variables of interest. Significant main effects and interac-
tions were analyzed using Tukey's least significant differ-
ence test. Effect size was calculated as a 15+ 8 min
difference in cycle TT performance between groups.
This effect size was based on the standard deviation
from previous TT data collected in our laboratory [32]
as well as detecting a large threshold effect [33]. Six vol-
unteers per group were required to achieve a power of
0.8. Statistical significance was set at P<0.05. All data
are presented as means + SD.

Results

The cycle TT improved (ie., faster time) from the first
to second preliminary test at SL in both the HH group
(96.7 £ 5.0 min vs. 79.4 £ 4.9 min) and NH group (93.7 +
12.6 min vs. 79.3 £ 9.8 min). However, the cycle TT did
not change from the second preliminary test to the first
cycle TT at SL for either the HH (73.9 £ 7.6 min) or NH
(73.2 £ 8.2 min) group. Thus, any learning or training ef-
fects due to unfamiliarity with the cycle ergometer were
minimized prior to definitive data collection.

Resting ventilation, cardiovascular, and hematologic data

Resting ventilatory and cardiovascular measurements are
presented in Table 1. None of the resting measurements
were significantly different between the two groups prior
to beginning steady-state exercise at SL or in HYP. Rest-
ing SaO, and PETO, were lower in HYP compared to
SL values, but other physiologic measures did not
change from SL. The percent change in resting PV from
SL to HH (4.8 +7.5%) or SL to NH (6.1 + 8.9%) was also
not different between groups or from zero.

Steady-state exercise data

Ventilatory, cardiovascular, and perceptual responses
measured during the two steady-state exercise bouts on
the cycle ergometer are presented in Table 2. Given the
26% estimated decrement in VOypeq from SL to HYP,
the work rates (W) at 45% and 65% of altitude-specific
VOspearc Were decreased (P <0.05) in HYP compared to
SL in both groups. Between groups, there were no differ-
ences in the 45% or 65% altitude-specific VO;peac work
rates at SL or HYP. These results attest to adequate
matching of volunteers and were thus ‘by design’.

There were no differences in ventilatory responses (i.e.,
VE, VO,, VCO,, VE-VO,™, VE-VCO,", or Sa0,) be-
tween groups at 45% and 65% of altitude-specific VO, pcak
at SL or in HYP. As expected, the exercise VO,, VCO,,
and SaO, were lower (P<0.05), and VE was similar in
HYP compared to SL within groups at the same relative
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Table 1 Resting ventilatory, cardiovascular, and hematologic responses in hypobaric hypoxia (HH) and normobaric

hypoxia (NH)

Group Condition VE (BTPS) PETO, PETCO, Sa0, HR MAP Hb Hct
(I-min™") (mmHg) (mmHg) (%) (bpm) (mmHg) (mg/dl) (%)
HH (n=16) SL 1M1+£22 1058458 394+33 972+14 680+98 855+4.1 159+0.7 46719
HYP 13.0+3.1 47.2 £2.4*% 40.1+43 79.6 £ 4.2% 718+83 86.8+6.5 155+07 456+22
NH (nh=6) SL 108+1.3 1028+23 390+£19 980+ 09 67.7+30 86.5+6.2 15711 46.1 £33
HYP 1M1+£16 46,6 +2.8% 368+1.6 785+ 34% 707+ 26 842+29 152+06 44719

Mean + SD; *P < 0.05 from SL; TP < 0.05 between groups. SL sea level, HYP hypoxia, VE minute ventilation, PETO, partial pressure of end-tidal oxygen, PETCO, partial
pressure of end-tidal carbon dioxide, SaO, arterial oxygen saturation, HR heart rate, MAP mean arterial pressure, [Hb] hemoglobin concentration, Hct hematocrit.

work rates. The VE-VO{1 and VE~VCO[1, therefore,
were both increased (P < 0.05) in HYP compared to SL at
45% and 65% of altitude-specific VOqpeai.

There were no differences in any of the cardiovascular
or perceptual responses (i.e., HR, CO, MAP, and RPE)
between groups at 45% and 65% of altitude-specific
VOspeak at SL or in HYP. Within groups, there were also
no changes in any of these variables from SL to HYP at
either of the relative work rates. Also, the percent
change in CO from SL to HYP within groups did not
differ between HH and NH. Individuals with a lower ex-
ercise SaO, during steady-state exercise were related to
individuals with a higher CO at 45% (r = -0.45, P = 0.04)
and 65% (r=-0.39, P=0.06) altitude-specific VOspeqi in
HYP. The percent change in PV from pre- to post-
exercise was not different in the HH and NH groups at
SL (-9.0+3.4vs. -11.9+6.3) or HYP (-9.1 £ 6.0 vs. -8.1 £
4.8), respectively.

Time trial performance data

Both the HH and NH groups exhibited similar TT per-
formance at SL. Not only was the mean TT performance
similar between groups, but also individuals in the HH
and NH groups were closely matched on their TT per-
formance at SL (Figure 2a). The TT performance,

however, was longer (P <0.05) in HH compared to NH
(Figure 2a). The percent decrement in TT performance
from SL to HH (65.1 + 23.6%) was also much greater (P <
0.05) than the decrement from SL to NH (35.5 + 13.7%).
Moreover, for each pair of men matched on physical per-
formance and demographic characteristics, the individual
exposed to HH had a greater decrement in T'T perform-
ance than the one exposed to NH (Figure 2b). The mean
power outputs maintained for the HH and NH group, re-
spectively, during the first (163 £19 W vs. 164+ 16 W),
second (166 + 21 W vs. 164 + 24 W), third (163 + 18 W vs.
161 +17 W), and fourth (164+17 W vs. 175+ 16 W)
quarters of the T'T conducted at SL were not different.
The power outputs maintained in the HH and NH group,
respectively, during the first (104 + 17 W vs. 129 + 22 W),
second (100 +8 W vs. 123 + 14 W), third (96 + 10 W vs.
117 £ 21 W), and fourth (102 +9 W vs. 127 + 28 W) quar-
ters of the TT conducted in HYP tended (P =0.08) to be
approximately 20 W lower in the HH group compared to
the NH group.

During the TT, the mean SaO, was similar in the HH
and NH groups at SL (97 +2% vs. 97 + 1%) and in HYP
(74 £ 5% vs. 77 £ 3%; P =0.07), respectively. The HR dur-
ing the TT was also similar in the HH and NH groups at
SL (168 + 13 bpm vs. 165 + 12 bpm) and in HYP (150 +

Table 2 Ventilatory, cardiovascular, and perceptual responses in a HH group and NH group at SL and in HYP

Group Condition % peak Work rate VE(BTPS) VO, VE-VO3' VE-VCO3' SaO, HR co MAP RPE
(W) (I-min™")  (I-min™") (%) (bpm)  (I-min”") (mmHg)

HH (hn=6) SL 45 110+8 43+7 155+£0.10 277450 333+50 98+1 126+11 149425 105+9 8+2
65 15714 67+9 213+£013 312+43 372443 97+1 159413 175421 108+11 11+3

HYP 45 73+ 8% 39411 101£012% 352434*% 357434  74%5% 126413 139413 109+14 8+2

65 110+8*  61+5 153+£0.12% 402+25% 398+25*% 75+3* 149+11 161+21 115424 1143

NH (n=6) SL 45 116+23  44+9 157+£026 294430 296+30 98+1 130+19 131425 115+9 9+2
65 162424 67417  203+039 33247 33147 97+1 156+17 147426 113+12 1342

HYP 45 68+24*  37+7 118+£025% 306433 336+33* 74+6* 121+15 128+17 109+7 10+2

65 116+24*  61+13 166+036% 365+30% 384+30% 75+4* 148+13 156427 117+11 12+3

Mean =+ SD; *P < 0.05 from SL at same relative work rate within groups; P < 0.05 between groups at same relative work rate. SL sea level, HYP hypoxia, VE, BTPS
minute ventilation, VO, oxygen uptake, VE - VO, ventilatory equivalent for oxygen, VE - VCO,™" ventilatory equivalent for carbon dioxide, SaO, arterial oxygen
saturation, HR heart rate, CO cardiac output, MAP mean arterial pressure, RPE rating of perceived exertion; 45% of altitude-specific VO,pcak (45%), 65% of altitude-

specific VOypeak (65%).
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Figure 2 Time trial performance data. (a) Cycle time trial
performance at sea level (SL) and hypoxia (HYP) in a group of men
exposed to either hypobaric hypoxia (HH) or normobaric hypoxia
(NH). Each man exposed to HH demonstrated a greater decrement
in TT performance in hypoxia (HYP) than each man exposed to NH
at an ambient PO, equivalent to 4,300 m in each condition. (b) For
each matched pair, their sea level (SL) TT performance fell closely on
the line of identity, but their performance in HH fell below their
matched pair in NH on the line of identity. *P < 0.05 from SL; 'P < 0.05
between groups.

9 bpm vs.158 + 13 bpm), respectively. The RPE during the
TT was similar in the HH and NH groups at SL (14 +3
vs. 15+ 2) and in HYP (14 + 2 vs. 15 + 1), respectively.

Discussion

The major finding from this study was that cycle TT
performance was impaired to a greater degree in HH
compared to NH which supports the first part of our hy-
pothesis. As such, exposure to NH may not induce the
same hypoxic stimulus and training benefit as exposure
to HH. The two groups were closely matched at sea level
on physical performance and demographic characteris-
tics which makes the observed TT performance differ-
ences between HH and NH more convincing. Moreover,
the fact that each individual exposed to HH demon-
strated a larger decrement in TT performance compared
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to their fitness and age-matched pair exposed to NH
demonstrates that this response was consistent across a
wide range of individuals. Our findings do not support
the second part of our hypothesis that increased ventila-
tion and improved O, delivery in NH compared to HH
were responsible for the differences in TT performance.
In fact, nothing we measured was able to identify the
reasons for the TT performance differences between HH
and NH. This result suggests the need for additional
physiologic and metabolic measures (e.g., cerebrovascular
regulation and oxygenation, nitric oxide bioavailability,
subclinical pulmonary edema) to determine the reason for
such large differences in TT performance [19,34].

Our ventilatory data during rest, steady-state exercise
at 45% and 65% of altitude-specific VOypear, and the
cycle TT do not indicate clear differences between
groups. The resting PETCO, was the same in HH and
NH in the present study, which supports the findings of
some [16,20] but not others [17,19,21]. Differences be-
tween studies may be related to the use of partially accli-
matized subjects in studies reporting differences [17,21].
Given that resting SaO, was not different between HH
and NH in any of the reported studies, the functional
significance of a slightly lower resting PETCO, in NH is
not conclusive. During steady-state exercise in the
present study, PETCO, was not measured but the venti-
latory equivalents for O, and CO, were not different be-
tween groups at either of the two work rates. In
addition, the SaO, was not different between groups
during steady-state exercise at either of the work rates
or during the cycle TT. Our results confirm and extend
the previously reported lack of differences in resting
Sa0, in the two environments [17-19] to no differences
during steady-state exercise at 45% and 65% of altitude-
specific VOypeai or during a cycle TT. It seems clear that
if differences do exist in resting or exercise ventilation,
they are subtle and do not affect the end product of pul-
monary gas exchange.

Our cardiac and perceptual response data during rest,
steady-state exercise at 45% and 65% altitude-specific
VOspeas and the cycle TT also do not indicate clear dif-
ferences between groups. Others have also reported no
differences in either resting HR, CO, or MAP between
the two environments [18-22], while one study reported
a higher resting HR in HH compared to NH [16]. No
studies have compared RPE between the two environ-
ments. Our results are consistent with a previously re-
ported lack of differences in resting cardiac responses to
the two environments [23] and extend these findings to
no differences during steady-state exercise or during a
cycle TT. The cycle TT performance differences ob-
served in the present study, therefore, cannot be attrib-
uted to differences in cardiac output or oxygen delivery
between HH and NH.
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Given that volunteers were able to self-select the
power output at the beginning and during the cycle TT,
we analyzed pacing strategies between groups during dif-
ferent quarters of the TT. The volunteers in the HH
group tended (P = 0.08) to select an approximately 20-W
lower power output compared to the NH group right
from the beginning of the TT. Even though the differ-
ence was not statistically significant, it suggests that per-
ceptual clues were influencing their self-selected power
output prior to even starting TT exercise. The HH
group also perceived a lower power output as being
equally hard despite a tendency for a lower HR compared
to the NH group. This finding suggests a subjective feeling
that exercise is more difficult in HH compared to NH.

On an individual basis, a lower SaO, during steady-
state exercise was associated with a higher CO in both
the HH and NH groups in this study. This finding sug-
gests that a greater level of hypoxemia will result in
compensatory vasodilatation to match O, supply to de-
mand. This finding has been previously reported [35].
However, the response was not dependent on the envir-
onment and as such cannot account for the large differ-
ences in TT performance between groups. A recent
study [36] reported that hypocapnia may decrease cere-
bral blood flow and thus cerebral oxygenation which
could become a limiting factor in exercise performance
if SaO, falls below 82% [37]. In the present study, PaCO,
was not measured, but one study [20] reported a lower
PaCO, in HH compared to NH despite a similar
PETCO,. If this occurred in the present study, our SaO,
values during exercise were well below the 82% cutoff
value and a greater degree of hypocapnia in HH may
have induced a greater decrement in TT performance.

Although greater fluid retention due to less diuresis has
been reported in HH compared to NH [38,39], our data
do not suggest any differences in fluid balance between
the two environments. The change in PV from SL to HYP
was similar in both HH and NH, and the change in PV
during exercise was also similar in both environments.
Previous research demonstrated compelling radiographic
evidence of pulmonary edema in athletes exercising in
HH [40], while other studies found no lung water accu-
mulation in humans exercising in NH [41,42]. Differences
in fluid circulation and the trans alveolar-capillary mem-
brane flux [43] may induce greater pulmonary vasocon-
striction in HH and decrease O, diffusion via a decreased
pressure gradient [13]. This decrease in O, diffusion could
potentially limit exercise performance and explain the
greater TT impairment in HH compared to NH. In
addition, nitric oxide bioavailability has been reported to
be lower in HH compared to NH [19] which could impair
O, unloading at the tissue and negatively impact TT per-
formance in HH. Nitrate supplementation has been shown
to improve exercise tolerance in hypoxia and reduce
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muscle metabolic perturbation due to improved O, deliv-
ery [44]. Further research is needed to elucidate potential
physiologic mechanisms responsible for the large observed
differences in TT performance between HH and NH.

Limitations of this study should be acknowledged.
First, although our sample size was adequate to detect
differences in cycle TT performance, borderline differ-
ences in SaO,, HR, and power outputs during the TT
may have become significant if a larger sample size was
utilized. A recent article justifying small-n research
sheds light on the importance of analyzing trends, and
the current trend (despite a lack of statistical signifi-
cance) should not be disregarded [45]. Second, the data
were collected within the first 4 h of exposure. Thus,
our physiologic findings should not be extended beyond
that time point. Third, the ambient PO, was kept the
same, but PIO, can differ between groups based on the
differences in water vapor calculations [34]. In this study,
the calculated PIO, was slightly lower in HH (83.4 mmHg)
compared to NH (874 mmHg). However, the resting
Sa0O, was similar in both groups, indicating that the same
level of hypoxemia, regardless of PIO,, was induced in
both environments. Fourth, a 26% decrement in VOspcak
was assumed in both HH and NH. There is individual
variability in this decrement at altitude [46], and if VOspcak
was decremented to a larger degree in HH than NH, the
volunteers may have started their TT in a more fatigued
state in HH. The RPE, however, did not differ between
groups during the submaximal work rates or during the
time trial. Last, independent groups of volunteers were
utilized. A cross-over design was not utilized due to po-
tential carry-over effect of a previous exposure to hypoxia
on performance. The volunteers, however, were closely
matched on fitness levels and demographic characteristics,
which make the results more convincing.

The practical implications of this study are important
for athletes, mountaineers, military personnel, and
others employing NH to induce health and performance
benefits at terrestrial altitude. Although the physiologic
responses appear to be similar between the two environ-
ments, it is clear that TT performance is impacted to a
greater degree in HH. If the objective of training pro-
grams is to improve performance at terrestrial altitude,
HH appears to be a more stressful stimulus and would
likely induce greater performance adaptations. The speci-
ficity of training principle as well as a recent review article
citing no improvements in endurance performance, mea-
sured in hypobaric hypoxia, following intermittent expo-
sures to NH but great improvements with intermittent
exposures to HH supports this argument [8].

Conclusions
In conclusion, this study found a greater decrement in
cycle TT performance in HH compared to NH. Clearly,
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HH appears to be a more stressful stimulus, and NH
should not be utilized as a substitute for HH when en-
durance performance is the main outcome variable of
interest. Ventilatory, cardiovascular, and hematologic re-
sponses did not differ during rest, steady-state exercise
at the same relative or absolute work rates, or a cycle
TT performance test between environments. Further re-
search is needed to elucidate potential physiologic mech-
anisms responsible for the observed differences in TT
performance between HH and NH.

Abbreviations

CO: Cardiac output; DBP: Diastolic blood pressure; HH: Hypobaric hypoxia;
HR: Heart rate; HYP: Hypoxia; MAP: Mean arterial pressure; NH: Normobaric
hypoxia; PETCO,: Partial pressure of end-tidal carbon dioxide; PETO,: Partial
pressure of end tidal oxygen; PIO,: Inspired PO,; PO,: Ambient PO,;

PV: Plasma volume; RPE: Rating of perceived exertion; SaO,: Arterial oxygen
saturation; SBP: Systolic blood pressure; SL: Sea level; TT: Time trial;

VE: Minute ventilation; VE - VCO, ™" Ventilatory equivalent for carbon dioxide;
VE-VO, " Ventilatory equivalent for oxygen; VCO,: Carbon dioxide
production; VO,: Oxygen consumption; VO,pea: Peak oxygen consumption.

Competing interests
The authors declare that they have no competing interests.

Authors' contribution

BAB, CSF, and SRM conceived and designed the study, collected and
analyzed the data, and wrote the manuscript. JES and SPA collected and
analyzed the data. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank the test volunteers for their participation and
cooperation in this study. The authors gratefully acknowledge the technical
and logistical support provided by Mr. Leonard Elliot, SGT Michael Tapia, SGT
Sarah Eliot, Mr. Guy Tatum, Mr. Vincent Forte, Mr. Eric Lammi, Ms. Ingrid Sils,
Ms. Alison Money, SGT Michael Cavallo, SPC Miguel Fernandez, and Ms. Liz
Easton. The efforts of all chamber crew operators, medical support staff, and
central blood lab personnel are also gratefully acknowledged.

The views, opinions and/or findings in this report are those of the authors,
and should not be construed as an official Department of the Army position,
policy or decision, unless so designated by other official documentation. This
study was approved for public release.

Citations of commercial organizations and trade names in this report do not
constitute an official Department of the Army endorsement or approval of
the products or services of these organizations.

Funding was provided by the US Army Medical Research and Materiel
Command.

Received: 23 January 2014 Accepted: 4 April 2014
Published: 28 Apr 2014

References

1. Beidleman BA, Muza SR, Fulco CS, et al: Intermittent altitude exposures
improve muscular performance at 4300 m. J Appl Physiol 2003,
95:1824-1832.

2. Beidleman BA, Muza SR, Fulco CS, et al: Intermittent hypoxic exposure
does not improve endurance performance at altitude. Med Sci Sports
Exerc 2009, 41:1317-1325.

3. Siebenmann C, Robach P, Jacobs RA, et al: "Live high-train low" using
normobaric hypoxia: a double-blinded, placebo-controlled study. J App!
Physiol 2012, 112:106-117.

4. Levine BD, Stray-Gundersen J: A practical approach to altitude training:
where to live and train for optimal performance enhancement. Int J
Sports Med 1992, 13:5209-5212.

5. Brugniaux JV, Schmitt L, Robach P, et al: Eighteen days of "living high-
training low" stimulate erythropoiesis and enhance aerobic performance
in elite middle-distance runners. J Appl Physiol 2006, 100:203-211.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

Page 8 of 9

Fulco CS, Muza SR, Beidleman BA, et al: Effect of repeated normobaric
hypoxia exposures during sleep on acute mountain sickness, exercise
performance, and sleep during exposure to terrestrial altitude. Am J
Physiol Regul Integr Comp Physiol 2011, 300:R428-R436.

Savourey G, Garcia N, Besnar Y, et al: Pre-adaptation, adaptation and de-
adaptation to high altitude in humans: cardio-ventilatory and
haematological changes. Eur J Appl Physiol 1996, 73:529-535.

Fulco CS, Beidleman BA, Muza SR: Effectiveness of preacclimatization
strategies for high-altitude exposure. Exerc Sport Sci Rev 2013, 41:55-63.
Wilber RL: Current trends in altitude training. Sports Med 2001, 31:249-265.
Bonetti DL, Hopkins WG: Sea-level exercise performance following
adaptation to hypoxia. A Meta-Analysis Sports Med 2009, 39:107-127.
Bailey DM, Davies B: Physiological implications of altitude training for
endurance performance at sea level: a review. Br J Sports Med 1997,
31:183-190.

Wilber RL, Stray-Gundersen J, Levine BD: Effect of hypoxic "dose" on
physiological responses and sea-level performance. Med Sci Sports Exerc
2007, 39:1590-1599.

Millet G, Faiss R, Pialoux V: Point:Counterpoint: hypobaric hypoxia
induces/does not induce different responses from normobaric hypoxia.
J Appl Physiol 2012, 112:1783-1784.

Mounier R, Brugniaux JV: Counterpoint: hypobaric hypoxia does not
induce different responses from normobaric hypoxia. J Appl Physiol 2012,
112:1784-1786.

Mounier R, Brugniaux JV: Last word on Counterpoint: hypobaric hypoxia
does not induce different physiological responses from normobaric
hypoxia. J Appl Physiol 2012, 112:1796.

Savourey G, Launay JC, Besnard Y, et al: Normo- and hypobaric hypoxia:
are there any physiological differences? Eur J Appl Physiol 2003,
89:122-126.

Loeppky JA, Icenogle M, Scotto P, et al: Ventilation during simulated
altitude, normobaric hypoxia and normoxic hypobaria. Respir Physiol
1997, 107:231-239.

Tucker A, Reeves J, Robertshaw D, Grover R: Cardiopulmonary response to
acute altitude exposure: water loading and denitrogenation. Respir
Physiol 1983, 54:363-380.

Faiss R, Pialoux V, Sartori C, et al: Ventilation, oxidative stress, and nitric
oxide in hypobaric versus normobaric hypoxia. Med Sci Sports Exerc 2013,
45:253-260.

Savourey G, Launay JC, Besnard Y, et al: Normo or hypobaric hypoxic tests:
propositions for the determination of the individual susceptibility to
altitude illnesses. Eur J Appl Physiol 2007, 100:193-205.

Loeppky JA, Scotto P, Roach RC: Acute ventilatory response to simulated
altitude, normobaric hypoxia, and hypobaria. Aviat Space Environ Med
1996, 67:1019-1022.

Richard NA, Sahota IS, Winder N, Ferguson S, Sheel AW, Koehle MS: Acute
mountain sickness, chemosensitivity and cardio-respiratory responses in
humans exposed to hypobaric and normobaric hypoxia. J Appl Physiol
2013, doi:10.1152/japplphysiol.00319.2013.

Richard NA, Koehle MS: Differences in cardio-ventilatory responses to
hypobaric and normobaric hypoxia: a review. Aviat Space Environ Med
2012, 83:677-684.

Mounier R, Pialoux V, Cayre A, et al: Leukocyte's Hif-1 expression and
training-induced erythropoetic response in swimmers. Med Sci Sports
Exerc 2006, 38:1410-1417.

Fulco CS, Cymerman A: Physical performance at varying terrestrial
altitudes. In Medical Aspects of Harsh Environments, Volume 2. Edited by
Lounsbury DE, Bellamy RF, Zatchuk R. Washington, DC: Borden Institute;
2002:693-728.

Borg G: Perceived exertion as an indicator of somatic stress. Scand J
Rehabil Med 1970, 2:92-98.

Dill DB, Costill DL: Calculation of percentage changes in volumes of
blood, plasma, and red cells in dehydration. J Appl Physiol 1974,
37:247-248.

Bogert LWJ, Van Lieshout JJ: Non-invasive pulsatile arterial pressure and
stroke volume changes from the human finger. Exp Physiol 2005,
90:437-446.

Sugawara J, Tanabe T, Miyachi M, et al: Non-invasive assessment of
cardiac output during exercise in healthy young humans: comparison
between Modelflow method and Doppler echocardiography method.
Acta Physiol Scand 2003, 179:361-366.


http://www.extremephysiolmed.com/content/3/1/8

Beidleman et al. Extreme Physiology & Medicine 2014, 3:8 Page 9 of 9
http://www.extremephysiolmed.com/content/3/1/8

30. Ainsle PN, Barach A, Murrell C, et al: Alterations in cerebral autoregulation
and cerebral blood flow velocity during acute hypoxia: rest and exercise.
Am J Physiol 2007, 292:H976-H983.

31, Jeukendrup A, Saris WHM, Brounds F, Kester ADM: A new validated
endurance performance test. Med Sci Sports Exerc 1996, 28:266-270.

32, Fulco CS, Kambis KW, Friedlander AL, et al: Carbohydrate supplementation
improves cycle time-trial performance during energy deficit at 4,300-m
altitude. J Appl Physiol 2005, 99:867-876.

33. Hopkins WG, Marshall SW, Batterham AM, Hanin J: Progressive statistics for
studies in sports medicine and exercise science. Med Sci Sports Exerc
2009, 41:3-12.

34. Girard O, Koehle MS, Guenette JA, et al. Comments on Point:Counterpoint:
hypobaric hypoxia induces/does not induce different response from
normobaric hypoxia. J Appl Physiol 2012, 112:1788-179%4.

35. Casey DP, Joyner MJ: Compensatory vasodilatation during hypoxic
exercise: mechanisms responsible for matching oxygen supply to
demand. J Physiol 2012, 590:6321-6326.

36.  Siebenmann C, Serensen H, Jacobs RA, et al: Hypocapnia during hypoxic
exercise and its impact on cerebral oxygenation, ventilation and
maximal whole body O, uptake. Resp Physiol Neurobiol 2013, 185:461-467.

37. Amann M, Calbet JA: Convective oxygen transport and fatigue. J App/
Physiol 2008, 104:861-870.

38.  Loeppky JA, Roach RC, Maes D, et al: Role of hypobaria in fluid balance
response to hypoxia. High Alt Med Biol 2005, 6:60-71.

39. Epstein M, Saruta T: Effects of simulated high altitude on renin-
aldosterone and Na homeostasis in normal man. J Appl Physiol 1972,
33:204-210.

40.  Anholm JD, Milne EN, Stark P, et al: Radiographic evidence of interstitial
pulmonary edema after exercise at altitude. J Appl Physiol 1999,
86:503-509.

41, MacNutt MJ, Guenette JA, Witt JD, et al: Intense hypoxic cycle exercise
does not alter lung density in competitive male cyclists. Eur J Appl Physiol
2007, 99:623-631.

42. Guenette JA, Sporer BC, MacNutt MJ, et al- Lung density is not altered
following intense normobaric hypoxic interval training in competitive
female cyclists. J Appl Physiol 2007, 103:875-882.

43, Levine BD, Kubo K, Kobayashi T, et al: Role of barometric pressure in
pulmonary fluid balance and oxygen transport. J Appl Physiol 1988,
64:419-428.

44. Vanhatalo A, Fulford J, Bailey SJ, et al: Dietary nitrate reduces muscle
metabolic perturbation and improves exercise tolerance in hypoxia.

J Physiol 2011, 589:5517-5528.

45.  Ploutz-Snyder RJ, Fiedler J, Feiveson AH: Justifying small-n research in
scientifically amazing settings: challenging the notion that only "big-n"
studies are worthwhile. J Appl Physiol 2014. doi:10.1152/japplphysiol.
01335.2013.

46. Young AJ, Cymerman A, Burse RL: The influence of cardiorespiratory
fitness on the decrement in maximal aerobic power at high altitude.
Eur J Appl Physiol 1985, 54:12-15.

10.1186/2046-7648-3-8

Cite this article as: Beidleman et al.: Cycling performance decrement is
greater in hypobaric versus normobaric hypoxia. Extreme Physiology &
Medicine 2014, 3:8

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.extremephysiolmed.com/content/3/1/8

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Volunteer test subjects
	Study design
	Peak oxygen uptake
	Resting ventilation and cardiovascular assessment
	Hematologic assessment
	Steady-state exercise testing
	Time trial performance
	Environmental conditions
	Statistical analyses

	Results
	Resting ventilation, cardiovascular, and hematologic data
	Steady-state exercise data
	Time trial performance data

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors' contribution
	Acknowledgements
	References

