MEETING ABSTRACT

Open Access

A real-time heat strain index using foot temperature and heart rate while wearing personal protective equipment in hot environments

Joo-Young Lee^{1*}, Siyeon Kim¹, Joonhee Park¹, Yutaka Tochihara²

From 15th International Conference on Environmental Ergonomics (ICEE XV) Portsmouth, UK. 28 June - 3 July 2015

Introduction

Over the past century, a number of indices to assess heat stress and strain in hot environments have been developed, but there are few non-invasive indices to evaluate the heat strain of workers wearing personal protective equipment. ISO 7933 [1] presents an analytical method to determine heat stress using calculation of the predicted heat strain but the calculation is complicated to apply for real-time monitoring. Moran and colleagues [2,3] derived a simple and useful index based on rectal temperature $(T_{\rm re})$ and heart rate (HR) (Physiological Strain Index, PSI) but the index is limited at work in fields because of the direct measurement of rectal temperature. The purpose of this study was to present a non-invasive method to monitor heat strain in real-time using foot temperature (T_{foot}) and HR of workers wearing personal protective equipment with protective boots in hot environments.

Methods

Three experimental dataset were used in this study. [Series A] Eight male students $[48.0 \pm 16.7 \text{ ml.kg}^{-1}.\text{min}^{-1}$ in VO_{2peak} and 193 ± 8 bpm in HR_{max}] participated in 12 experimental conditions: two activities × three clothing levels × two air temperatures (25°C and 32°C with 50%RH). Three types of experimental ensembles were employed: Control (total clothing mass of 590 g except running shoes, 62 % covered of BSA, CBSA [4]), Tyvek condition (787 g, 98 % CBSA), and plastic coverall condition (1,245 g, 98 % CBSA, no evaporation except the face). Two levels of metabolic activities were assigned at 60-min rest and exercise on the treadmill at 6~8 km.h⁻¹.

Results

 $T_{\rm foot}$ of 38.0°C and 38.5°C were determined as Alarm and Danger criteria, respectively. The Alarm level was set at the point that $T_{\rm foot}$ reached $T_{\rm re}$ during exercise. This level was limited to the conditions of wearing full personal protective equipment (98 % CBSA) at $T_{\rm a}$ of 32°C. The Danger level was determined at the moments that extreme subjective perceptions (very uncomfortable, very hot, and very hard) were given. The original PSI [2,3] was modified using $T_{\rm foot}$ and HR, and the modified PSI showed a significant relationship with the original PSI (r = 0.756, P<0.05) while exercise wearing PPE at $T_{\rm a}$ of 32°C.

© 2015 Lee et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: leex3140@snu.ac.kr

¹College of Human Ecology, Seoul National University, Seoul, Republic of Korea

Full list of author information is available at the end of the article

Conclusion

The modified PSI using non-invasive variables are valid to predict heat strain for workers wearing full protective equipment including protective boots in hot environments, but cannot be applied to workers wearing light work wear in thermal neutral or cool environments.

Authors' details

¹College of Human Ecology, Seoul National University, Seoul, Republic of Korea. ²Faculty of Design, Kyushu University, Fukuoka, Japan.

Published: 14 September 2015

References

- ISO 7933: Ergonomics of the thermal environment Analytical determination and interpretation of heat stress using calculation of the predicted heat strain. International Organization for Standardization 2004.
- Moran DS, Shitzer A, Pandolf KB: A physiological strain index to evaluate heat stress. Am J Physiol 1998a, 275:R129-R134.
- Moran DS, Montain SJ, Pandolf KB: Evaluation of different levels of hydration using a new physiological strain index. Am J Physiol 1998b, 275:R854-R860.
- Lee JY: A study on the body surface area of Korean adults. Ph.D dissertation, Seoul National University; 2005, 191-207.

doi:10.1186/2046-7648-4-S1-A104

Cite this article as: Lee *et al.*: A real-time heat strain index using foot temperature and heart rate while wearing personal protective equipment in hot environments. *Extreme Physiology & Medicine* 2015 4(Suppl 1):A104.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit