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Applying systems biology methods to the study
of human physiology in extreme environments
Lindsay M Edwards1* and Ines Thiele2
Abstract

Systems biology is defined in this review as ‘an iterative process of computational model building and experimental
model revision with the aim of understanding or simulating complex biological systems’. We propose that, in
practice, systems biology rests on three pillars: computation, the omics disciplines and repeated experimental
perturbation of the system of interest. The number of ethical and physiologically relevant perturbations that can be
used in experiments on healthy humans is extremely limited and principally comprises exercise, nutrition, infusions
(e.g. Intralipid), some drugs and altered environment. Thus, we argue that systems biology and environmental
physiology are natural symbionts for those interested in a system-level understanding of human biology. However,
despite excellent progress in high-altitude genetics and several proteomics studies, systems biology research into
human adaptation to extreme environments is in its infancy. A brief description and overview of systems biology in
its current guise is given, followed by a mini review of computational methods used for modelling biological
systems. Special attention is given to high-altitude research, metabolic network reconstruction and constraint-based
modelling.
Review
Introduction
The term ‘systems biology’ is suddenly everywhere. One
could be forgiven for believing, therefore, that it is some-
thing new, yet this would be misleading. The application
of general system theory to living organisms dates back,
at least, to Ludwig von Bertalanffy's pioneering work in
the 1920s and perhaps earlier still (see [1] and references
therein). To appreciate exactly what systems biology is,
at least in theory and philosophy, one could do worse
than von Bertalanffy's own description of a system and
why general system theory rose to prominence in the
last century. He contrasted system theory with the ana-
lytical, reductionist approach to science that had
characterised the scientific method from Francis Bacon
onward, thus, “Application of the analytical procedure
depends on two conditions. The first is that interactions
between ‘parts’ be. . . weak enough to be neglected . . .
Only under this condition, can the parts be ‘worked out,’
actually, logically and mathematically, and then be ‘put
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together.’ The second condition is that the relations
describing the behaviour of the parts be linear” [1].
The first condition is clear enough. The second can be

better expressed mathematically. If each ‘part’ of the
whole can be described by a function (say f1, f2 etc.),
then condition two states that the behaviour of the
whole (say w) can be written as a linear combination of
the parts, i.e. w = x1f1 + x2f2 + x3f3. . . where x1, x2. . . etc.
are constants. For von Bertalanffy, violation of either or
both of these conditions defined a system [1]. Few with
any experience of biological research would argue that
these conditions are true of living things. Life is, by its very
nature, awesomely complex and chaotic. To cite von
Bertalanffy one final time, ‘The then prevalent mechanistic
approach just mentioned appeared to neglect or actively
deny just what is essential in the phenomena of life.’
This, then, helps define the theory and philosophy of

systems biology. Yet, what does it mean in practice?
That is the focus and purpose of this review. To some
extent, this review will be biased by the authors' own
experiences of working together in this area. Thus,
examples will be drawn from high-altitude research and
the use of metabolic network reconstructions. Yet, these
perspectives, we hope, will be broadly generalisable, and
we aim to provide a basic introduction to systems biology
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for the non-expert. We also propose that systems biology
and environmental and exercise physiology are particu-
larly complementary. We will also briefly discuss some of
the challenges that lie ahead.

What is (and is not) systems biology?
If then it is nothing new, why is systems biology
suddenly so visible? Some have implicitly argued that
systems biology is a mirage, no more than a rebranding
of the type of holistic thinking that some biologists and
integrative physiologists have been using for decades [2].
Yet, systems biology in its current guise is different to
these earlier disciplines. It stems from advances in tech-
nology, particularly in genome sequencing, computing
and in analytical platforms such as mass spectrometry
and nuclear magnetic resonance. In order to truly study
a large system in its entirety, one requires the ability to
model and measure it in its entirety (or at least make an
effective attempt to do so). Until the advent of whole
genome sequencing, this was an insurmountable experi-
mental challenge for biologists. With the advancements
in computing power, genomics, transcriptomics, proteo-
mics, metabolomics and fluxomics, it is becoming possible
to ‘profile’ and model a complete biological system or
subsystem.
Yet, another common misconception is that systems

biology and the so-called omics disciplines are one and
the same. This, too, is misleading. An omics discipline is
defined by its methods, as an attempt to measure every
instance of a species in a specific class. Thus, proteomics
is an attempt to measure every protein in a cell or tissue.
Systems biology, while leveraging much of the data these
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Figure 1 The iterative cycle of systems biology (image of climber cou
experiments generate, transcends the methods. Recon-
structions of cell metabolic networks not only undoubt-
edly leverage data from genomics, proteomics and
metabolomics, but also use data from traditional enzyme
assays and measures of physiological function. Indeed, a
key test of any reconstruction is whether it has the
capacity to recapitulate the normal physiological func-
tions of the system of interest [3]. Another feature that
distinguishes systems biology from omics disciplines is
recursivity. Systems biology as defined herein (and else-
where [4]) comprises an iterative cycle of experiment
and modelling rather than a single experiment and mod-
elling cycle. In this respect, systems biology is similar to
traditional biological practice, in which statistics are
used to ‘process’ experimental data before the ‘filtered’
observations are compared with a biological model, lead-
ing to progressive model revision. This has been described
as the ‘model as hypothesis’ [4].
In practice, perhaps the single feature that distin-

guishes systems biology from both the omics disciplines
and other relatives such as integrative physiology is the
central role of mathematical modelling and computer
simulations—a distinction that has been overlooked by
previous commentators [5]. Yet, we are not alone in
emphasising the central role of computation in systems
biology [6-8]. Therefore, we propose defining systems
biology (for the purposes of this review) as ‘an iterative
process of computational model building and experi-
mental model revision with the aim of understanding or
simulating complex biological systems’ (Figure 1). Al-
though there has been substantial variation in how
systems biology has been defined previously, we believe
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that our definition here is consistent with the emerging
consensus [4,6,9]. Given the huge amounts of data
generated by the trademark techniques of genomics,
transcriptomics, proteomics and metabolomics, unaided
human interpretation is utterly inadequate, and systems
biology, as defined here and elsewhere, arises sponta-
neously. Yet, typical omics experiments (in isolation) fail
this test; most involve the de novo building of multivari-
ate statistical models to the data from each experiment
in isolation rather than progressive model refinement
(statisticians who specialise in multivariate modelling are
well aware of the problems associated with this approach;
instead, they recommend that such statistical models are
confirmed using newly acquired data or bootstrapping
procedures [10]).
There are many in the biological sciences who

continue to hold that the very phrase ‘biological model-
ling’ is an oxymoron. To them, we argue that model
building itself is an indispensible (yet often tacit) part of
biological thinking. Whether the model is descriptive
only (as is found in the discussion section of virtually
every biological paper ever published), graphic (i.e. a
figure or drawing) or fully quantitative, all models are
nothing more than descriptions of biological reality that
one believes to be correct. Adding numbers to a model
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Figure 2 ‘Top-down’ vs. ‘bottom-up’ approaches to modelling biolog
simply makes its validity easier to assess; computers are
required if the complexity of a quantitative (or even
semi-quantitative) model passes beyond a certain point.

Approaches to modelling biological systems
If mathematical modelling and computer simulations are
the distinguishing features of systems biology, which
methods are currently used? This review is too limited a
forum for examining such a broad topic in any depth;
fortunately, many excellent books and reviews already
exist (see [4,11-13]). Nevertheless, a brief introduction
follows, preceding a more in-depth description of one
particular method: genome-scale biochemical modelling.
Approaches to modelling biological systems can

broadly be divided into two, often described as ‘top-
down’ and ‘bottom-up’ (Figure 2). Top-down methods start
with data and fit models to them. Traditional statistics is
therefore a top-down method, as are machine learning,
pattern recognition and (broadly) bioinformatics. These
methods can discern meaningful biological relationships
and sometimes even quite complex networks; in such
cases, they are often referred to as ‘reverse-engineering’.
For example, Algorithm for the Reconstruction of Accurate
Cellular Networks (ARACNE) uses statistical methods to
reconstruct transcriptional networks by extracting cor-
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related transcripts across a series of biological perturba-
tions [14]. ARACNE successfully predicted 11 out of 12
targets of the MYC transcription factor, based on pertur-
bation experiments, which were subsequently experimen-
tally validated [15]. Of the multivariate statistical methods
currently in fashion, perhaps the most popular is principal
component analysis (PCA) and its relatives (such as
orthogonal projection onto latent spaces). These tech-
niques are regularly used to process omics data, especially
metabolomics.
In contrast to top-down methods, such as ARACNE

and PCA, are bottom-up methods that attempt to build
models based on existing or acquired knowledge of
network behaviour and connectedness (or topology).
These include traditional kinetic models (based on a
system of differential equations, cf. [16]) and stochastic
methods [17]. However, both these approaches (kinetic
and stochastic) are presently limited to relatively small
systems. An exciting new approach to bottom-up model-
ling is the reconstruction of biochemical networks com-
bined with a suite of modelling tools that fall under the
heading of constraint-based modelling [18]. The recon-
struction process is well established for metabolism and
has been applied to a growing number of organisms,
including mouse [19] and human [20]. The same ap-
proach can also be applied for other cellular functions,
such as signalling [21,22] and macromolecular synthesis
[23]. The reconstruction process has been reviewed by
numerous groups [24-26], and more recently, a standard
operating procedure has been formulated that describes
the necessary steps in great detail [3].
Lastly, it should be noted that the distinction between

top-down and bottom-up modelling is not one of bio-
logical hierarchical level. For example, one might use
metabolomics data acquired from cells and build a stat-
istical model from it—this would be top-down modelling
of a system. Equally, one could build a model of signal
transduction (from organ to organ) in the blood using
theories of flow and diffusion and anatomical measure-
ments. This would be a bottom-up model.

Metabolic network reconstruction
We will briefly introduce the general approach to
reconstructing metabolic networks; a more detailed
description can be found elsewhere [3]. First, a draft re-
construction is generated based on an annotated genome
(for example, from NCBI). Biochemical databases such
as Kyoto Encyclopedia Of Genes And Genomes (KEGG)
[27] and Braunschweig Enzyme Database [28] are used
to link genes to function and thus metabolic reactions.
However, the resulting draft reconstruction will be
incomplete and will contain numerous missing or wrong
annotations. The refinement and expansion of the draft
reconstruction is performed through manual curation
and extensive use of biochemical literature specific for
the target organism. Particular attention needs to be
paid to substrate and coenzyme specificity, which can
differ between organisms and may require additional
biochemical data. As a third step, the conversion of the
manually curated metabolic reconstruction into a math-
ematical model follows, which includes the addition of
physico-chemical and physiological balances and bounds
(or constraints). Balances in biochemical networks can
be, for example, mass and energy conservation, and the
majority of modelling applications of metabolic models
assume the system to be in quasi-steady state. Bounds
on metabolic reactions can include maximal reaction
rates based on the catalysing enzyme's properties (or
measured in vivo metabolite uptake rates, for example
VO2max) and thermodynamic information (e.g. reaction
directionalities [29,30]). Network debugging and evalu-
ation comprise the fourth stage and ensure that the
metabolic model has similar phenotypic properties as
the target organism. This includes evaluation of dead-
end metabolites (metabolites that are only either pro-
duced or consumed in the network, but not both) to
identify whether they can be connected to the remaining
network by adding one or more reactions to the recon-
struction. Also, the model's capability to produce its
own biomass is evaluated. This process may lead to the
identification of yet more network gaps. This stage also
includes further quality tests; these will depend on the
properties of the target organism as well as the availabil-
ity of experimental data (for example, phenotyping data,
knock-out data etc.). The fifth and final stage is un-
doubtedly the most exciting: study of the biological sys-
tem of interest. Network reconstructions have been put
to numerous uses over the last decade or so, including
biological discovery [31], metabolic engineering [32,33],
prediction of the outcome of adaptive evolution [34,35],
network topology [36,37] and the assessment of pheno-
typic behaviour [38-41]. Some of these applications have
been summarised in excellent recent reviews [42-44].

The human metabolic reconstruction
The genome-scale metabolic reconstruction process
described above was applied to human metabolism, and
the subsequent reconstruction, published in 2007, was
named Recon 1 [20]. Recon 1 accounts for the functions
of 1,496 open reading frames, 2,766 metabolites and
3,311 reactions distributed over eight cellular compart-
ments (the cytoplasm, mitochondria, nucleus, endoplas-
mic reticulum, Golgi apparatus, lysosome, peroxisome
and the extracellular environment). This first compre-
hensive, genome-scale human metabolic reconstruction
captures most of the known central metabolic pathways
occurring in any human cell. This reconstruction has been
employed for numerous biomedical studies (reviewed in



Edwards and Thiele Extreme Physiology & Medicine 2013, 2:8 Page 5 of 8
http://www.extremephysiolmed.com/content/2/1/8
[43]). Moreover, the generic human metabolic reconstruc-
tion serves as a starting point for tissue- and cell-type
specific reconstructions, many of which are generated
using omics data (e.g. transcriptomic and proteomic data)
as well as some manual curation. These reconstructions
include macrophages [45], hepatocytes [46], myocytes [47]
and adipocytes [47]. Recently, a core cancer cell network
has also been compiled by mapping the NCI-60 cancer
cell line transcriptomic data onto Recon 1 [48].
The next pressing challenge is the need to generate

multi-network and ‘trans-hierarchical’ (multi-scale) models.
Examples of these are recent models that describe the
metabolism of two human cell (or tissue) types and their
interactions [47,49]. In these cases, the model comprises
genome-scale metabolic networks at one level and a most
basic two-node model of cell-cell interaction at the other.
The complexity of even these simple models highlights
the awesome task ahead if we wish to model the interac-
tions between multiple cell types, tissues and organs, even
before we have considered the physical complications of
anatomy and physiology. Other important multi-system
models are those attempting to reconcile metabolism
with, for example, transcriptional control (cf. [50-52]) and
those that combine gross models of physiology with de-
tailed models of enzyme kinetics [53]. Again, an excellent
recent review has addressed the challenges associated with
multi-scale modelling [13].
Two final notes on bottom-up reconstructions: first,

although these models are termed bottom-up, they are,
inevitably, middle-up. This is because they rest on an
arbitrarily defined lowest level; one could almost always
model from a lower level (say atomic or subatomic).
This, however, raises a serious philosophical point—is it
possible to predict complex biological functions from
the very lowest hierarchical levels or are we prevented
from ever doing this (perhaps by a form of Gödel's com-
pleteness theorem as suggested previously [4])? Second,
the level of detail (sometimes called fine- or coarse-
graining) in a model is very important. Although it
seems as though increasing detail would always be desi-
rable, it may not be [6]. Parameter fitting (i.e. estimating
parameters from in vivo data) is hazardous and can lead
to mistaken confidence, especially where an unknown and
unmeasured molecule (or other influence) may be acting
simultaneously on multiple points in a system (as may
very often be the case [7]). Another practical constraint on
the degree of detail in a bottom-up model is computing
power; there is no point having a model that includes
single molecule dynamics if it is completely unusable.

Systems biology at work—filling gaps in human
metabolism
Figure 1 shows the iterative cycle of systems biology:
model building and computation generate hypotheses
that are tested experimentally, leading to further model
refinement. For example, a common and important
question when reconstructing metabolic networks is as
follows: is the reconstruction complete? Given that
metabolic network reconstructions leverage all the cur-
rently available data regarding human metabolism, this
question is equivalent to asking whether our knowledge
of human metabolism is complete, yet in a completely
thorough and systematised way. One can identify missing
reactions in a network reconstruction by comparing
model simulations with experimental data [31]. This
method is generally called gap filling, and numerous com-
putational algorithms have been published [31,54,55].
Similarly, metabolomics data from cells, tissues and bio-
fluids [56-58] could be used to identify missing knowledge
in human metabolism; the presence of a metabolite in a
biofluid, which is absent from the reconstruction, indi-
cates a knowledge gap. There are a number of different
computational approaches [31,55] that could be used in
these cases to identify candidate missing reactions and
corresponding genes [59,60]. These computational methods
‘borrow’ one or more reactions, known to be present in
other species, from a universal reaction database (for
example, the KEGG ligand database [27]) and add them to
the metabolic model, thus potentially filling the gap. If no
existing experimental support can be found in the lite-
rature, then the predicted missing genes and reactions are
hypotheses that require experimental validation.

Systems biology and extreme physiology research
How can these methods help the extreme physiology
researcher (and what use are data on humans in extreme
environments to the systems biologist)? Central to the
practice of systems biology, at least in cells, is the
concept of perturbing a biological system [6]. Thus, one
might very reasonably argue that the three pillars of
systems biology are (1) the ability to measure all the
variables of interest (omics), (2) a conceptual framework
within which to understand the data (a model) and (3) a
way of perturbing the system under interrogation (the
experiment). However, the list of methods available to
perturb the biological homeostasis of a healthy human is
relatively short and comprises exercise, drugs (subject to
ethical constraints), dietary manipulation, infusions (for
example, lipid emulsions such as Intralipid [58]) and
environmental challenges including extreme temperature
and hypoxia. Therefore, extreme environments represent
one of only a handful of techniques to perturb healthy
human biology in a systems biology experiment. As we
stated at the outset, we believe therefore that environmen-
tal physiology and systems biology are natural symbionts.
The usefulness of exercise in this role has, to a limited
extent, already been recognised by a small number of
systems biology researchers [61,62]. For those whose
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research focus is environmental adaptation, they will be
well aware that the patterns of human cell, organ and
physiological adaptation to extreme environments are
astonishingly complex. Reductionist methods have led to
a number of ‘paradoxes’ (for example, the lactate paradox
in hypoxia). As suggested previously [63], resolving these
paradoxes may require systems biology methods. For
example, computational modelling suggests that mole-
cular overcrowding in cells may be an important, yet over-
looked, factor when attempting to explain limits to cell
oxidative metabolism (and hence lactate production under
various conditions) [61]. Thus, collaborations between
environmental physiologists and systems biologists (with
an interest in human physiology) would appear to make
good sense for both parties.
Although there is currently a shortage of systems

biology studies (as defined here and elsewhere [4,8]) on
human environmental physiology, excellent work has
been conducted in the areas of high-altitude genetics
and proteomics. Several studies have shown convincingly
that human populations at high altitude have experi-
enced a degree of genetic divergence. For example, two
recent studies showed that Tibetans, whose ancestors
have resided at high altitude for over 10,000 years, have
acquired and maintained novel mutations in the gene
encoding the oxygen-sensing hypoxia-inducible factor
(HIF) molecule [64,65]. Two-dimensional gel electro-
phoresis-based proteomics, conducted on skeletal mus-
cle biopsies acquired from subjects exposed for 1 week
at 4,500 m [66], showed a number of proteins (related to
iron transport and oxidative metabolism) whose abun-
dance was significantly different in experienced climbers
after exposure to extreme high altitude. Other investiga-
tors have studied the human urinary peptidome [67] and
plasma proteome [68] in response to altitude exposure,
in the latter case, with particular attention to identifying
biomarkers of high-altitude pulmonary oedema. These
and similar studies will provide the building blocks for a
concerted systems biology effort to model and under-
stand the human physiological response to high altitude.
What is required now is a computational framework
within which these disparate data can be unified and
examined together, most probably a network reconstruc-
tion such as that outlined above [69]. There is also a
substantial literature on experimental hypoxia (and
related issues such as HIF signalling) in humans and
animals, including genuine systems biology research,
much of which would be relevant to those with an inte-
rest in high-altitude acclimatization (cf. [70-77]).

Building bridges between disciplines
Finally, here is a word regarding the challenges ahead.
There is increasing interest, driven to some extent by a
systems biology agenda within the major funding agencies,
in building collaborations between scientists from the life
scientists and their colleagues from the physical sciences
(including physicists, computer scientists, chemists and
mathematicians). Thus, the authors' own collaboration,
between a systems biologist/bioengineer and a human
physiologist, will become increasingly common. Yet, sim-
ply putting physical and life scientists ‘in the same room’
is not enough. Life scientists with poor mathematics will
struggle to grasp much of what is possible, while physical
scientists with little experience or knowledge of biology
will fail to instinctively see both new applications and
potential limitations. A perhaps neglected aspect of this
interaction is that a lack of knowledge of each others'
disciplines limits the scope of the conversation.
There is also a recognition that a new breed of trans-

disciplinary scientists will be needed. At present, the
focus is on retraining physical scientists and mathemati-
cians in life sciences, with the tacit assumption that this
is an easier task than retraining life scientists in math-
ematics and computation. This, we believe, is a hazar-
dous course of action. Years of experience in any field is
never wasted, and life scientists bring with them an
innate understanding of the ‘logic of life’ that is impos-
sible to gain in a few short weeks (or even years). We
are not alone in this viewpoint; to paraphrase Ideker
et al., ‘cross-disciplinary scientists’ contributions will be
proportional to their understanding of biology [6]. Thus,
physiologists and life scientists must be prepared to rise
to the challenge, by expanding their knowledge of com-
putation and (especially) mathematics to a level that will
allow them to be productive systems biologists and to
engage with scientists from other areas in an informed
and productive manner. No longer can biology be con-
sidered a science for those who ‘cannot do maths’.

Conclusions
Systems biology is everywhere, yet true applications of
systems biology in human physiological research are
surprisingly rare. This review has attempted to provide a
brief overview of systems biology for the non-expert, while
also attempting to describe some ways in which these new
approaches can be used to further our understanding of
how humans respond to extreme environments. Indeed,
we argue that environmental physiology and systems bio-
logy are natural bedfellows. Environmental and exercise
challenges provide a unique platform for the study of
human physiology from a systems perspective, by allowing
scientists to challenge homeostasis in a manner that
is both ethical and evolutionarily appropriate (in other
words, by challenging human physiology with challenges
that it has evolved to withstand). Ultimately, the hope is
that the relationship between physiology and systems bio-
logy will develop and grow, leading us to a more mature
and profound understanding of healthy human biology.
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